

MSAD 15

Charging Ahead with Patriot Pride!

Gray New-Gloucester High School

Mathematics Formula Booklet

what part of

$$
\begin{aligned}
& \left(1+e_{4}\left[\frac{D}{D t} \overline{w^{\prime \prime}\left(\frac{T}{T}\right)^{2}}+\overline{w^{\prime \prime}\left(\frac{T}{T}\right)^{2}} \nabla_{s} \bar{u}^{\prime}-\alpha \overline{\left(\frac{T}{T}\right)^{3}} g^{\prime t}\left(\nabla_{s} \bar{\Phi}+\frac{D \bar{u}_{x}}{D t}\right)\right]-2 f(t) \overline{w^{\prime \prime}\left(\frac{T}{T}\right)^{2}}-2 \overline{w^{\prime} w^{\prime \prime}} \frac{T}{T} D_{x}\right. \\
& +\frac{1}{\left(1+e_{4}\right) C_{p}^{2}} \overline{w^{\prime} w^{\prime \prime} \nabla_{p}}\left[\left(1+e_{4}\right)^{2} C_{p}^{2} \overline{\left(\frac{T}{T}\right)^{2}}\right]+\frac{2}{C_{p}} \overline{w^{\prime 2}} \frac{T}{T} \nabla_{n}\left[\left(1+e_{4}\right) C_{p} \overline{w^{\prime}} \frac{T}{T}\right]+\frac{2}{\bar{\rho}} \overline{w^{\prime}\left(\frac{T}{T}\right)^{\prime} \nabla^{2}\left(\rho u^{\prime \prime}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1+e_{4}\right) \frac{D}{D t} \overline{\left(\frac{T}{T}\right)^{3}}-3 f(t) \overline{\left(\frac{T}{T}\right)^{3}}-3 \overline{w^{\prime 2}\left(\frac{T}{T}\right)^{2}} D_{s}+\frac{3}{\left(1+e_{4}\right) C_{T}^{2}} \overline{w^{\prime 2} \frac{T^{3}}{T}} \nabla \cdot\left[\left(1+e_{4}\right)^{2} C_{r}^{2} \overline{\left(\frac{T}{T}\right)^{2}}\right] \\
& +\frac{2}{\bar{\rho}} \overline{\left(\frac{T}{T}\right)^{3} \nabla_{a}\left(\rho u^{\prime \prime}\right)}+\frac{3}{\bar{\rho} T C_{p}} \overline{\left(\frac{T}{T}\right)^{\prime}\left[P V_{a} W^{\prime \prime}-\overline{P V_{a} w^{\prime n}}-\nabla_{s}\left(P_{s}^{\prime} w^{\prime \prime}-\overline{P_{s}^{\prime} W^{\prime \prime}}\right)-\frac{D P_{g}^{\prime}}{D t}\right]}
\end{aligned}
$$

do you not understand?

Name \qquad

Foundations

Slope (Gradient)

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra

Percent change

Linear Equations

Law of exponents

$$
\begin{aligned}
& y=m x+b \\
& A x+B y=C \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

$b^{m} \cdot b^{\boldsymbol{n}}=b^{\boldsymbol{m}+\boldsymbol{n}}$
$\left(b^{m}\right)^{n}=b^{m \cdot n}$
$(a b)^{m}=a^{m} \bullet b^{m}$
$\frac{b^{m}}{b^{n}}=b^{m-n}$
Growth/decay function

$$
\begin{aligned}
& y=a b^{x} \\
& y=a b^{x-h}+k
\end{aligned}
$$

Growth/decay model
Compound interest
Continuously compounded interest
Scientific notation

$$
a \times \mathbf{1 0}^{n} \text {, where } \mathbf{1} \leq a<\mathbf{1 0}
$$

Natural base exponential function
$y=a e^{r x}$
$y=a e^{r x-h}+k$

Logarithm

inverses

$$
\log _{b y} y=x \quad \Leftrightarrow \quad b^{x}=y
$$

$$
\begin{aligned}
& g(f(x))=\log _{b} b^{x}=x \\
& f(g(x))=b^{\log _{b} x}=x \\
& \log _{\mathrm{e}} x=\ln x
\end{aligned}
$$

properties
product
quotient
power
change of base
$n^{\text {th }}$ term of an arithmetic
sum of n terms of an arithmetic
$n^{\text {th }}$ term of a geometric
sum of n terms of a finite geometric
sum of an infinite geometric
$\log _{b} m n=\log _{b} m+\log _{b} n$
$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
$\log _{b} m^{n}=n \log _{b} m$
$\log _{c} a=\frac{\log a}{\log c}$
$\log _{c} a=\frac{\ln a}{\ln c}$

Sequences

$u_{n}=u_{1}+(n-\mathbf{1}) d$
$S_{n}=\frac{n}{\mathbf{2}}\left(\mathbf{2} u_{1}+(n-\mathbf{1}) d\right)=\frac{n}{\mathbf{2}}\left(u_{1}+u_{n}\right)$
$u_{n}=u_{1} r^{n-1}$
$S_{n}=\frac{u_{1}\left(r^{n}-\mathbf{1}\right)}{r-\mathbf{1}}=\frac{u_{1}\left(\mathbf{1}-r^{n}\right)}{\mathbf{1}-r} \quad r \neq \mathbf{1}$
$S_{\infty}=\frac{u_{1}}{1-r} \quad|r|<1$

Quadratic

axis of symmetry
discriminant
solutions

$$
f(x)=a x^{2}+b x+c
$$

$$
x=-\frac{b}{2 a}
$$

$$
b^{2}-4 a c
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Geometry

Midpoint formula

Distance formula

Pythagorean theorem

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
a^{2}+b^{2}=c^{2}
$$

Polygons

Sum of the measures of the interior $S_{i}=(n-2) \cdot 180$ angles of a convex n-gon

Sum of the measures of the exterior $S_{e}=360^{\circ}$ angles of a convex n-gon
Area of a parallelogram

$$
A=b \bullet h
$$

Area of a triangle

$$
A=\frac{1}{2}(b \cdot h)
$$

Area of a trapezium

$$
A=\frac{\mathbf{1}}{\mathbf{2}}(a+b) h
$$

Area of a circle

$$
A=\pi r^{2}
$$

Circumference of a circle

Volume of a Pyramid

Volume of a cuboid (rectangular prism) $\quad V=l \bullet w \bullet h$

Volume of a cylinder

Area of the curved surface of a cylinder $\quad A=\mathbf{2} \pi r h$

Volume of a sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Volume of a cone

$$
V=\frac{\mathbf{1}}{\mathbf{3}} \pi r^{2} h
$$

Right Triangle Trigonometry

$$
\begin{aligned}
& \sin A=\frac{\text { opp }}{\text { hyp }} \\
& \cos A=\frac{\text { adj }}{\text { hyp }} \\
& \tan A=\frac{\text { opp }}{\text { adj }}
\end{aligned}
$$

Angle relationships in Circles

Pre-calculus

Length of an arc

Area of a sector

Trigonometric identity

Pythagorean identity

Double angle formula

Cosine rule

Sine rule

Area of a triangle

Heron's Area Formula

$$
s=\theta r
$$

$$
A=\frac{\mathbf{1}}{\mathbf{2}} \theta r^{2}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$\sin 2 \theta=2 \boldsymbol{\operatorname { s i n }} \theta \cos \theta$

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\boldsymbol{\operatorname { c o s }} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$A=\frac{\mathbf{1}}{\mathbf{2}} a b \sin C$
area $=\sqrt{s(s-a)(s-b)(s-c)}$
$s=\frac{a+b+c}{2}$

$\underline{\text { Statistics }}$

Descriptive

Mean

Standard deviation

Variance

Probability of an event A

Complementary events

Combined events

Mutually exclusive events

Conditional probability

Independent events

z-score
$\bar{x}=\frac{\Sigma x}{n}$
$s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}$

$$
=s^{2}
$$

$$
P(A)=\frac{n(A)}{n(U)}
$$

$$
P(A)+P\left(A^{\prime}\right)=\mathbf{1}
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$P(A \cup B)=P(A)+P(B)$
$P(A \cap B)=P(A) P(B \mid A)$
$P(A \cap B)=P(A) P(B)$
$z=\frac{x-\mu}{\sigma}$

