

MSAD 15 Charging Ahead with Patriot Pride!

Gray New-Gloucester High School

Mathematics Formula Booklet

$$\begin{split} \textbf{what part of} \\ (1+e_4) \Big[\frac{D}{Dt} \overline{w'^{(}\left(\frac{T}{T}\right)^2} + \overline{w'^{s}\left(\frac{T}{T}\right)^2} \nabla_s \tilde{u}^i - \alpha \left(\frac{T'}{T}\right)^3 g^{is} \left(\nabla_s \bar{\Phi} + \frac{D\bar{u}_s}{Dt}\right) \Big] - 2f(t) \overline{w'^{(}\left(\frac{T'}{T}\right)^2} - 2\overline{w'^{i}w'^{s}} \frac{T}{T} D_s \\ & + \frac{1}{(1+e_4)C_p^2} \overline{w'^{i}w'^{s}} \nabla_s \Big[(1+e_4)^2 C_p^2 \left(\frac{T'}{T}\right)^2 \Big] + \frac{2}{C_p} \overline{w'^{s}} \frac{T'}{T} \nabla_s \Big[(1+e_4)C_p \overline{w'^{(}\frac{T}{T}\right)} + \frac{2}{\bar{\rho}} \overline{w'^{(}\frac{T'}{T})^2} \nabla_s (\rho u'^{s}) \\ & = \frac{1}{\bar{\rho}} \left(\frac{T'}{T}\right)^2 \nabla_s \sigma^{is} (u') + \frac{2}{\bar{\rho}TC_p} \overline{w'^{i}} \frac{T'}{T} \left[\sigma^{s\delta} (u') \nabla_s u'_{\beta} - \overline{\sigma^{s\delta}} (u') \nabla_s u'_{\beta} - \nabla_s F_r^{s} \right] = -\epsilon_3^i , \\ (1+e_4) \frac{D}{Dt} \left(\frac{T'}{T}\right)^3 - 3f(t) \left(\frac{T'}{T}\right)^3 - 3\overline{w'^{s}} \left(\frac{T'}{T}\right)^2 D_s + \frac{3}{(1+e_4)C_p^2} \overline{w'^{s}} \frac{T'}{T} \nabla_s \Big[(1+e_4)^2 C_p^2 \left(\frac{T'}{T}\right)^2 \Big] \\ & + \frac{2}{\bar{\rho}} \left(\frac{T'}{T}\right)^3 \nabla_s (\rho u'^{s}) + \frac{3}{\bar{\rho}TC_p} \left(\frac{T'}{T}\right)^2 \Big[P' \nabla_s w'^{s} - \overline{P} \nabla_s w'^{s} - \nabla_s (P'_s w'^{s} - \overline{P'_s w'^{s}}) - \frac{DP'_s}{Dt} \Big] \\ & = \frac{3}{\bar{\rho}TC_p} \left(\frac{T'}{T}\right)^2 [\sigma^{s\delta} (u') \nabla_s u'_{\beta} - \overline{\sigma^{s\delta}} (u') \nabla_s u'_{\beta} - \nabla_s F_r^{s} \right] = -\epsilon_3 . \end{split}$$

do you not understand?

Name_____

Foundations

Slope (Gradient)

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

<u>Algebra</u>

Percent change	Final value - Initial value • 100	
6	Initial value	
Linear Equations	y = mx + b Ax + By = C $y - y_1 = m(x - x_1)$	
Law of exponents	$b^m \bullet b^n = b^{m+n}$	
	$(b^m)^n = b^{m \cdot n}$	
	$(ab)^m = a^m \bullet b^m$	
	$\frac{b^m}{b^n} = b^{m-n}$	
Growth/decay function	$y = ab^{x}$ $y = ab^{x-h} + k$	
Growth/decay model	$y = a(1 \pm r)^t$	
Compound interest	$A = P(1 + r/n)^{nt}.$	
Continuously compounded interest	$A = Pe^{rt}$	
Scientific notation	$a \ge 10^n$, where $1 \le a < 10$	
Natural base exponential function	$y = ae^{rx}$ $y = ae^{rx - h} + k$	

Logarithm	$\log_b y = x \iff b^x = y$
inverses	
	$g(f(x)) = \log_b b^x = x$
	$f(g(x)) = \beta^{\log_{\beta} x} = x$
	$\log_{e} x = \ln x$
properties	

product

quotient

power

 $\log_b mn = \log_b m + \log_b n$ $\log_b \frac{m}{n} = \log_b m - \log_b n$ $\log_b m^n = n \log_b m$

change of base
$$\log_c a = \frac{\log a}{\log c}$$

$$\log_c a = \frac{\ln a}{\ln c}$$

Sequences

$$n^{\text{th}}$$
 term of an arithmetic $u_n = u_1 + (n-1)d$ sum of n terms of an
arithmetic $S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$ n^{th} term of a geometric $u_n = u_1r^{n-1}$ sum of n terms of a
finite geometric $S_n = \frac{u_1(r^n - 1)}{r-1} = \frac{u_1(1 - r^n)}{1 - r}$

sum of an infinite geometric

$$S_{\infty} = \frac{u_1}{1 - r} \quad |r| < 1$$

Quadratic	$f(x) = ax^2 + bx + c$
axis of symmetry	$x = -\frac{b}{2a}$
discriminant	$b^2 - 4ac$
solutions	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Geometry

Midpoint formula

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Distance formula

$$d' = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$

Pythagorean theorem

$$a^2 + b^2 = c^2$$

Special Right triangles

Polygons

Sum of the measures of the interior angles of a convex <i>n</i> -gon	$S_i = (n-2) \cdot 180$
Sum of the measures of the exterior angles of a convex <i>n</i> -gon	$S_e = 360^{\circ}$
Area of a parallelogram	$A = b \bullet h$
Area of a triangle	$A = \frac{1}{2} (b \bullet h)$
Area of a trapezium	$A = \frac{1}{2} (a+b)h$
Area of a circle	$A = \pi r^2$
Circumference of a circle	$C = 2\pi r$
Volume of a Pyramid	$V = \frac{1}{3} (\text{area of base } \cdot \text{ vertical height})$
Volume of a cuboid (rectangular prism)	$V = l \bullet w \bullet h$
Volume of a cylinder	$V = \pi r^2 h$

Area of the curved surface of a cylinder $A = 2\pi rh$

Volume of a sphere	$V=\frac{4}{3}\pi r^3$
Volume of a cone	$V = \frac{1}{3}\pi r^2 h$

$$\sin A = \frac{\text{opp}}{\text{hyp}}$$
$$\cos A = \frac{\text{adj}}{\text{hyp}}$$

 $\tan \mathcal{A} = \frac{\mathrm{opp}}{\mathrm{adj}}$

Angle relationships in Circles

Two Tangents Two Secants Tangent and Secant ĸ N $m \angle ATH = \frac{1}{2}(m\widehat{CY} - m\widehat{AH})$ $m \angle EVA = \frac{1}{2}(m\widehat{EN} - m\widehat{EA})$ $m \angle ARN = \frac{1}{2}(m \widehat{NKA} - m \widehat{AEN})$ x° vo $\frac{1}{2}(x^{o}-y^{o})$ 42(20+19) X 42x X V^{0} Central angle Inscribed angle External angle Internal angle

<u>Pre-calculus</u>

Length of an arc

Area of a sector

Trigonometric identity

Pythagorean identity

 $s = \theta r$

 $A = \frac{1}{2}\theta r^2$

 $\tan\theta = \frac{\sin\theta}{\cos\theta}$

 $\cos^2\theta + \sin^2\theta = 1$

Double angle formula

 $\sin 2\theta = 2\sin\theta\cos\theta$ $\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1$ $= 1 - 2\sin^2\theta$

Cosine rule

Sine rule

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$
$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Heron's Area Formula

$$A = \frac{1}{2}ab\sin C$$

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

 $s = \frac{a+b+c}{2}$

Statistics

Mean

Standard deviation

Variance

$$\overline{x} = \frac{\Sigma x}{n}$$
$$s = \sqrt{\frac{\Sigma (x - \overline{x})^2}{n - 1}}$$

Probability of an event A

$$P(A) = \frac{n(A)}{n(U)}$$

 $= s^2$

Complementary events

$$P(A) + P(A') = \mathbf{1}$$

Combined events

Mutually exclusive events

Conditional probability

Independent events

$$P(A \cap B) = P(A)P(B)$$

 $P(A \cup B) = P(A) + P(B)$

 $P(A \cap B) = P(A)P(B|A)$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

z-score

$$z = \frac{x - \mu}{\sigma}$$